Exercise 43

Find the derivative. Simplify where possible.

$$
y=x \sinh ^{-1}(x / 3)-\sqrt{9+x^{2}}
$$

Solution

Take the derivative using the chain and product rules.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left[x \sinh ^{-1}\left(\frac{x}{3}\right)-\sqrt{9+x^{2}}\right] \\
& =\frac{d}{d x}\left[x \sinh ^{-1}\left(\frac{x}{3}\right)\right]-\frac{d}{d x}\left(\sqrt{9+x^{2}}\right) \\
& =\left[\frac{d}{d x}(x)\right] \sinh ^{-1}\left(\frac{x}{3}\right)+x\left[\frac{d}{d x} \sinh ^{-1}\left(\frac{x}{3}\right)\right]-\frac{1}{2}\left(9+x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(9+x^{2}\right) \\
& =(1) \sinh ^{-1}\left(\frac{x}{3}\right)+x\left[\frac{1}{\sqrt{1+\left(\frac{x}{3}\right)^{2}}} \cdot \frac{d}{d x}\left(\frac{x}{3}\right)\right]-\frac{1}{2}\left(9+x^{2}\right)^{-1 / 2} \cdot(2 x) \\
& =\sinh ^{-1}\left(\frac{x}{3}\right)+x\left[\frac{1}{\sqrt{1+\frac{x^{2}}{9}}} \cdot\left(\frac{1}{3}\right)\right]-\frac{x}{\sqrt{9+x^{2}}} \\
& =\sinh ^{-1}\left(\frac{x}{3}\right)+\frac{x}{\sqrt{9+x^{2}}}-\frac{x}{\sqrt{9+x^{2}}} \\
& =\sinh ^{-1}\left(\frac{x}{3}\right)
\end{aligned}
$$

